Friday, April 28, 2017

Cassini Captures Closest Images of Saturn's Atmosphere

This unprocessed image shows features in Saturn's atmosphere from closer than ever before. The view was captured by NASA's Cassini spacecraft during its first Grand Finale dive past the planet on April 26, 2017.

Credit: NASA/JPL-Caltech/Space Science Institute.

Cassini

Lyrids in Southern Skies

Earth's annual Lyrid meteor shower peaked before dawn on April 22nd, as our fair planet plowed through dust from the tail of long-periodcomet Thatcher. Seen from the high, dark, and dry Atacama desert a waning crescent Moon and brilliant Venus join Lyrid meteor streaks in this composited view. Captured over 5 hours on the night of April 21/22, the meteors stream away from the shower's radiant, a point not very far on the sky from Vega, alpha star of the constellation Lyra. The radiant effect is due to perspective as the parallel meteor tracks appearto converge in the distance. In the foreground are domes of the Las Campanas Observatory housing (left to right) the 2.5 meter du Pont Telescope and the 1.3 meter Optical Gravitational Lensing Experiment (OGLE) telescope.
Image Credit & CopyrightYuri Beletsky(Carnegie Las Campanas ObservatoryTWAN)

Wednesday, April 26, 2017

Between the Rings of Saturn

On April 12, as the Sun was blocked by the disk of Saturn the Cassini spacecraft camera looked toward the inner Solar System and the gas giant's backlit rings. At the top of the mosaicked view is the A ring with its broader Encke and narrower Keeler gaps visible. At the bottom is the F ring, bright due to the viewing geometry. The point of light between the rings is Earth, 1.4 billion kilometers in the distance. Look carefullyand you can even spot Earth's large moon, a pinprick of light to the planet's left. Today Cassini makes its final close approach to Saturn's own large moon Titan, using Titan's gravity to swing into the spacecraft's Grand Finale, the final set of orbits that will bring Cassini just inside Saturn's rings.
Image Credit: Cassini Imaging TeamSSIJPL,ESANASA

Cassini

Hubble's Cosmic Bubble

This entrancing image shows a few of the tenuous threads that comprise Sh2-308, a faint and wispy shell of gas located 5,200 light-years away in the constellation of Canis Major (The Great Dog).

Sh2-308 is a large bubble-like structure wrapped around an extremely large, bright type of star known as a Wolf-Rayet Star '” this particular star is called EZ Canis Majoris. These type of stars are among the brightest and most massive stars in the Universe, tens of times more massive than our own sun, and they represent the extremes of stellar evolution. Thick winds continually poured off the progenitors of such stars, flooding their surroundings and draining the outer layers of the Wolf-Rayet stars. The fast wind of a Wolf-Rayet star therefore sweeps up the surrounding material to form bubbles of gas.

EZ Canis Majoris is responsible for creating the bubble of Sh2-308 '” the star threw off its outer layers to create the strands visible here. The intense and ongoing radiation from the star pushes the bubble out farther and farther, blowing it bigger and bigger. Currently the edges of Sh2-308 are some 60 light-years apart!

Beautiful as these cosmic bubbles are, they are fleeting. The same stars that form them will also cause their death, eclipsing and subsuming them in violent supernova explosions.

Credit: ESA/Hubble andamp; NASA
Text credit: European Space Agency

Hubble Space Telescope

Saturday, April 22, 2017

NGC 4302 and NGC 4298

Seen edge-on, spiral galaxy NGC 4302 (left) lies about 55 million light-years away in the well-groomed constellation Coma Berenices. A member of the large Virgo Galaxy Cluster, it spans some 87,000 light-years, a little smaller than our own Milky Way. Like the Milky Way, NGC 4302's prominent dust lanes cut along the center of the galactic plane, obscuring and reddening the starlight from our perspective. Smaller companion galaxy NGC 4298 is also a dusty spiral. But tilted more nearly face-on to our view, NGC 4298 can show off dust lanes along spiral arms traced by the bluish light of young stars, as well as its bright yellowish core. In celebration of the 27th anniversary of the launch of the Hubble Space Telescope on April 24, 1990, astronomers used the legendary telescope to take this gorgeous visible light portrait of the contrasting galaxy pair.
Image Credit: NASAESA, M. Mutchler (STScI)

Wednesday, April 19, 2017

The Red Spider Planetary Nebula

Oh what a tangled web a planetary nebula can weave. The Red Spider Planetary Nebula shows the complex structure that can result when anormal star ejects its outer gases and becomes a white dwarf star. Officially tagged NGC 6537, this two-lobed symmetric planetary nebulahouses one of the hottest white dwarfs ever observed, probably as part of a binary starsystem. Internal winds emanating from the central stars, visible in the center, have been measured in excess of 1000 kilometers per second. These winds expand the nebula, flow along the nebula's walls, and cause waves of hot gas and dust to collide. Atoms caught in these colliding shocks radiate light shown in the above representative-color picture by theHubble Space Telescope. The Red Spider Nebula lies toward the constellation of the Archer (Sagittarius). Its distance is not well known but has been estimated by some to be about 4,000 light-years.
Image Credit: NASAESAHubbleHLA;Reprocessing & Copyright: Jesús M.Vargas & Maritxu Poyal

Hubble Space Telescope

Tuesday, April 18, 2017

Watercolor World

When imaged at infrared wavelengths that pierce the planet’s upper haze layer, the high-speed winds of Saturn's atmosphere produce watercolor-like patterns.

With no solid surface creating atmospheric drag, winds on Saturn can reach speeds of more than 1,100 miles per hour (1,800 kilometers per hour) -- some of the fastest in the solar system.

This view was taken from a vantage point about 28 degrees above Saturn's equator. The image was taken with the Cassini spacecraft wide-angle camera on Dec. 2, 2016, with a combination of spectral filters which preferentially admits wavelengths of near-infrared light centered at 728 nanometers.

The view was acquired at a distance of approximately 592,000 miles (953,000 kilometers) from Saturn. Image scale is 35 miles (57 kilometers) per pixel.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

Credit: NASA/JPL-Caltech/Space Science Institute

Cassini

Hubble sees Starbursts in Virgo

Although galaxy formation and evolution are still far from being fully understood, the conditions we see within certain galaxies -- such as so-called starburst galaxies  -- can tell us a lot about how they have evolved over time. Starburst galaxies contain a region (or many regions) where stars are forming at such a breakneck rate that the galaxy is eating up its gas supply faster than it can be replenished!

NGC 4536 is such a galaxy, captured here in beautiful detail by the Hubble?s Wide Field Camera 3 (WFC3). Located roughly 50 million light-years away in the constellation of Virgo (The Virgin), it is a hub of extreme star formation. There are several different factors that can lead to such an ideal environment in which stars can form at such a rapid rate. Crucially, there has to be a sufficiently massive supply of gas. This might be acquired in a number of ways -- for example by passing very close to another galaxy, in a full-blown galactic collision, or as a result of some event that forces lots of gas into a relatively small space.

Star formation leaves a few tell-tale fingerprints, so astronomers can tell where stars have been born. We know that starburst regions are rich in gas. Young stars in these extreme environments often live fast and die young, burning extremely hot and exhausting their gas supplies fairly quickly. These stars also emit huge amounts of intense ultraviolet light, which blasts the electrons off any atoms of hydrogen lurking nearby (a process called ionization), leaving behind often colorful clouds of ionized hydrogen (known in astronomer-speak as HII regions).

Credit: ESA/Hubble & NASA
Text Credit: European Space Agency

Hubble Space Telescope

Illustration of Cassini Space craft Diving through Plum of 'Ocean world' Enceladus

This illustration shows NASA's Cassini spacecraft diving through the plume of Saturn's moon Enceladus, in 2015. Two veteran NASA missions are providing new details about icy, ocean-bearing moons of Jupiter and Saturn, further heightening the scientific interest of these and other "ocean worlds" in our solar system and beyond.

Sunday, April 16, 2017

Leo Trio Galaxies

This group is popular in the northern spring. Famous as the Leo Triplet, the three magnificent galaxies gather in one field of view. Crowd pleasers when imaged with even modest telescopes, they can be introduced individually as NGC 3628 (left), M66 (bottom right), and M65 (top). All three are large spiral galaxies but they tend to look dissimilar because their galactic disks are tilted at different angles to our line of sight. NGC 3628 is seen edge-on, with obscuring dust lanes cutting across the plane of the galaxy, while the disks of M66 andM65 are both inclined enough to show off their spiral structure. Gravitational interactions between galaxies in the group have also left telltale signs, including the warped and inflated disk of NGC 3628 and the drawn out spiral arms of M66. This gorgeous view of the region spans about one degree (two full moons) on the sky. The field covers over 500 thousand light-years at the trio's estimated distance of 30 million light-years.
Image Credit & CopyrightIgnacio Diaz Bobillo

Saturday, April 15, 2017

Man, Sun and Dog

This was supposed to be a shot of trees in front of a setting Sun. Sometimes, though, the unexpected can be photogenic. During some planning shots, a man walking his dogunexpected crossed the ridge. The result was so striking that, after cropping, it became the main shot. The reason the Sun appears so largeis that the image was taken from about a kilometer away through a telephoto lens. Scattering of blue light by the Earth's atmosphere makes the bottom of the Sun appear slightly more red that the top. Also, if you look closely at the Sun, just above the man's head, a large group of sunspots is visible. The image was taken just last week in BadMergentheimGermany.
Image Credit & Copyright: Jens Hackmann

Tuesday, April 11, 2017

Castle Eye View

The best known asterism in northern skies, The Big Dipper is easy to recognize, even when viewed upside down, though some might see aplough or wagon. The star names and the familiar outlines appear framed in the ruined tower walls of the French Chateau du Morimontif you just slide your cursor over the image or follow this linkDubhe, alpha star of the dipper's parent constellation Ursa Major is at the lower left. Together with beta star Merak the two forma line pointing the way to Polaris and the North Celestial Pole, hidden from view by the stones. Since the image was captured on March 30, you can follow a line from dipper stars Phecda and Megrez to spot the faint greenish glow ofComet 41P/Tuttle-Giacobini-Kresak below center, still within the castle eye view. The periodic comet made a remarkable closeapproach to planet Earth on April 1.
Image Credit & Copyright: Stephane Vetter (Nuits sacrees, TWAN)

Dark Nebula LDN 1622 and Barnard's Loop

The silhouette of an intriguing dark nebulainhabits this cosmic scene. Lynds' Dark Nebula (LDN) 1622 appears below center against a faint background of glowing hydrogen gas only easily seen in long telescopic exposures of the region. LDN 1622 lies near the plane of our Milky Way Galaxy, close on the sky to Barnard's Loop - a large cloud surrounding the richcomplex of emission nebulae found in the Belt and Sword of Orion. Arcs along a segment of Barnard's loop stretch across the top of the frame. But the obscuring dust of LDN 1622 is thought to be much closer than Orion's more famous nebulae, perhaps only 500 light-years away. At that distance, this 1 degree wide field of view would span less than 10 light-years.
Credit & Copyright: Leonardo Julio (Astronomia Pampeana)

Monday, April 10, 2017

Expedition 50 Soyuz MS 02 Landing

The Soyuz MS-02 spacecraft is seen as it lands with Expedition 50 Commander Shane Kimbrough of NASA and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of Roscosmos near the town of Zhezkazgan, Kazakhstan on Monday, April 10, 2017 (Kazakh time).

Tuesday, April 4, 2017

Saturn in Infrared from Cassini

Many details of Saturn appear clearly in infrared light. Bands of clouds show great structure, including long stretching storms. Also quite striking in infrared is the unusual hexagonal cloud pattern surrounding Saturn's North Pole. Each side of the dark hexagon spans roughly the width of our Earth. The hexagon's existence was not predicted, and its origin and likely stability remains a topic of research. Saturn's famous rings circle the planet and cast shadows below the equator. The featured image was taken by the robotic Cassini spacecraft in 2014 in severalinfrared colors -- but only processed recently. In September, Cassini's mission will be brought to a dramatic conclusion as the spacecraft will be directed to dive into ringed giant.
Image Credit: NASAJPL-CaltechSSIProcessing: Maksim Kakitsev

Cassini

Hubble spots two interacting Galaxies defying cosmic Convention

Some galaxies are harder to classify than others. Here, Hubble’s trusty Wide Field Camera 3 (WFC3) has captured a striking view of two interacting galaxies located some 60 million light-years away in the constellation of Leo (The Lion). The more diffuse and patchy blue glow covering the right side of the frame is known as NGC 3447 — sometimes NGC 3447B for clarity, as the name NGC 3447 can apply to the overall duo. The smaller clump to the upper left is known as NGC 3447A.
Overall, we know NGC 3447 comprises a couple of interacting galaxies, but we’re unsure what each looked like before they began to tear one another apart. The two sit so close that they are strongly influenced and distorted by the gravitational forces between them, causing the galaxies to twist themselves into the unusual and unique shapes seen here. NGC 3447A appears to display the remnants of a central bar structure and some disrupted spiral arms, both properties characteristic of certain spiral galaxies. Some identify NGC 3447B as a former spiral galaxy, while others categorize it as being an irregular galaxy.
Image credit: ESA/Hubble & NASA
Text credit: European Space Agency

Saturday, April 1, 2017

Hubble's Double Galaxy Gaze: Leda and NGC 4424

Some astronomical objects have endearing or quirky nicknames, inspired by mythology or their own appearance. Take, for example, the constellation of Orion (The Hunter), the Sombrero Galaxy, the Horsehead Nebula, or even the Milky Way. However, the vast majority of cosmic objects appear in astronomical catalogs and are given rather less poetic names based on the order of their discovery.

Two galaxies are clearly visible in this Hubble image, the larger of which is NGC 4424. This galaxy is cataloged in the New General Catalog of Nebulae and Clusters of Stars (NGC), which was compiled in 1888. The NGC is one of the largest astronomical catalogs, which is why so many Hubble Pictures of the Week feature NGC objects. In total there are 7,840 entries in the catalog and they are also generally the larger, brighter, and more eye-catching objects in the night sky, and hence the ones more easily spotted by early stargazers.

The smaller, flatter, bright galaxy sitting just below NGC 4424 is named LEDA 213994. The Lyon-Meudon Extragalactic Database (LEDA) is far more modern than the NGC and contains millions of objects.

Many NGC objects still go by their initial names simply because they were christened within the NGC first. However, since astronomers can't resist a good acronym and 'Leda'� is more appealing than 'the LMED,'� the smaller galaxy is called "Leda." Leda was a princess in Ancient Greek mythology.

Text credit: European Space Agency
Image credit: ESA/Hubble andamp; NASA

Hubble Space Telescope

The Comet, the Owl and the Galaxy

Comet 41P/Tuttle-Giacobini-Kresak poses for a Messier moment in this telescopic snapshot from March 21. In fact it shares the 1 degree wide field-of-view with two well-known entries in the 18th century comet-hunting astronomer'sfamous catalog. Sweeping through northernspringtime skies just below the Big Dipper, the faint greenish comet was about 75 light-seconds from our fair planet. Dusty, edge-on spiral galaxy Messier 108 (bottom center) is more like 45 million light-years away. At upper right, the planetary nebula with an aging but intensely hot central star, the owlish Messier 97is only about 12 thousand light-years distant though, still well within our own Milky Way galaxy. Named for its discoverer and re-discoverers, this faint periodic comet was first sighted in 1858 and not again until 1907 and 1951. Matching orbit calculations indicated that the same comet had been observed at widely separated times. Nearing its best apparition and closest approach to Earth in over 100 years on April 1, comet 41P orbits the Sun with a period of about 5.4 years.
Image Credit & CopyrightBarry Riu

Thursday, March 30, 2017

Fast Stars and Rouge Planets in Orion Nebula

Start with the constellation of Orion. Below Orion's belt is a fuzzy area known as the Great Nebula of Orion. In this nebula is a bright star cluster known as the Trapezium, marked by four bright stars near the image center. The newly born stars in the Trapezium and surrounding regions show the Orion Nebula to be one of the most active areas of star formation to be found in our area of the GalaxyIn Orion, supernova explosions and close interactions between stars have created rogue planets and stars that rapidly move through space. Some of these fast stars have been found by comparing different images of this region taken by the Hubble Space Telescope many years apart. Many of the stars in the featured image, taken in visible and near-infrared light, appear unusually redbecause they are seen through dust that scatters away much of their blue light.
Image Credit: NASAESAHubble

Tuesday, March 28, 2017

Hubble's Glittering Frisbee Galaxy

This image from Hubble's Wide Field Camera 3 (WFC3) shows a section of NGC 1448, a spiral galaxy located about 50 million light-years from Earth in the little-known constellation of Horologium (The Pendulum Clock). We tend to think of spiral galaxies as massive and roughly circular celestial bodies, so this glittering oval does not immediately appear to fit the visual bill. What's going on?

Imagine a spiral galaxy as a circular frisbee spinning gently in space. When we see it face on, our observations reveal a spectacular amount of detail and structure '” a great example from Hubble is the telescope's view of Messier 51, otherwise known as the Whirlpool Galaxy. However, the NGC 1448 frisbee is very nearly edge-on with respect to Earth, giving it an appearance that is more oval than circular. The spiral arms, which curve out from NGC 1448's dense core, can just about be seen.

Although spiral galaxies might appear static with their picturesque shapes frozen in space, this is very far from the truth. The stars in these dramatic spiral configurations are constantly moving as they orbit around the galaxy's core, with those on the inside making the orbit faster than those sitting further out.

This makes the formation and continued existence of a spiral galaxy's arms something of a cosmic puzzle, because the arms wrapped around the spinning core should become wound tighter and tighter as time goes on '” but this is not what we see. This is known as the winding problem.

For Hubble's image of the Whirlpool Galaxy, visit: andnbsp;andnbsp;

http://hubblesite.org/image/1677/news_release/2005-12

Image credit: ESA/Hubble andamp; NASA

Text credit: European Space Agency

Hubble Space Telescope

Thursday, March 16, 2017

Farewell to Mimas

In its season of "lasts," NASA's Cassini spacecraft made its final close approach to Saturn's moon Mimas on January 30, 2017. At closest approach, Cassini passed 25,620 miles (41,230 kilometers) from Mimas. All future observations of Mimas will be from more than twice this distance.

This mosaic is one of the highest resolution views ever captured of the icy moon.

Close approaches to Mimas have been somewhat rare during Cassini's mission, with only seven flybys at distances of less than 31,000 miles (50,000 kilometers).

Mimas' surface is pockmarked with countless craters, the largest of which gives the icy moon its distinctive appearance. (See PIA12568 for more info on Mimas' distinctive crater, Herschel.)

Two versions of the mosaic are provided. In one, the left side, which is lit by reflected light from Saturn, has been enhanced in brightness in order to show the full surface. The second version features more natural illumination levels.

Imaging scientists combined ten narrow-angle camera images to create this mosaic view. The scene is an orthographic projection centered on terrain at 17.5 degrees south latitude, 325.4 degrees west longitude on Mimas. An orthographic view is most like the view seen by a distant observer looking through a telescope.

This mosaic was acquired at a distance of approximately 28,000 miles (45,000 kilometers) from Mimas. Image scale is approximately 820 feet (250 meters) per pixel. The images were taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 30, 2017.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

Image Credit: NASA/JPL-Caltech/Space Science Institute

Cassini

The Cone Nebula From Hubble

Stars are forming in the gigantic dust pillar called the Cone Nebula. Cones, pillars, and majestic flowing shapes abound in stellar nurseries where natal clouds of gas and dust are buffeted by energetic winds from newborn stars. The Cone Nebula, a well-known example, lies within the bright galactic star-forming region NGC 2264. The Cone was captured in unprecedented detail in this close-up composite of several observations from the Earth-orbiting Hubble Space Telescope. While the Cone Nebula, about 2,500 light-years away in Monoceros, is around 7 light-years long, the region pictured here surrounding the cone's blunted head is a mere 2.5 light-years across. In our neck of the galaxy that distance is just over half way from our Sun to its nearest stellar neighbors in the Alpha Centauri star system. The massive star NGC 2264 IRS, seen by Hubble's infrared camera in 1997, is the likely source of the wind sculpting the Cone Nebula and lies off the top of the image. The Cone Nebula's reddish veil is produced by glowing hydrogen gas.
Image Credit: Hubble Legacy ArchiveNASAESA - Processing & LicenceJudy Schmidt

Hubble Space Telescope

Wednesday, March 15, 2017

Mimas the Big One

Mimas' gigantic crater Herschel lies near the moon's limb in this Cassini view.

A big enough impact could potentially break up a moon. Luckily for Mimas, whatever created Herschel was not quite big enough to cause that level of disruption.

When large impacts happen, they deliver tremendous amounts of energy -- sometimes enough to cause global destruction.  Even impacts that are not catastrophic can leave enormous, near-permanent scars on bodies like Mimas (246 miles or 396 kilometers across).

This view looks toward the anti-Saturn hemisphere of Mimas. North on Mimas is up and rotated 32 degrees to the left. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Nov. 19, 2016.

The view was acquired at a distance of approximately 53,000 miles (85,000 kilometers) from Mimas. Image scale is 1,677 feet (511 meters) per pixel.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

Credit: NASA/JPL-Caltech/Space Science Institute

Cassini

A Dark Winter Sky Over Monfrague National Park in Spain

You, too, can see a night sky like this. That is because Monfrague National Park inSpain, where this composite image was created, has recently had its night sky officially protected from potential future light pollution. Icons of the night sky that should continue to stand out during northern winter -- and are visible on the featured image -- include very bright stars like SiriusBetelgeuse, and Procyon, bright star clusters like the Pleiades, and, photographically, faint nebulas like theCalifornia and Rosette Nebulas. Even 100 years ago, many people were more familiar with a darker night sky than people today, primarily because of the modern light pollution. Other parks that have been similarly protected as dark-sky preserves include Death Valley National Park (USA) and Grasslands National Park(Canada). Areas such as the city of Flagstaff, Arizona and much of the Big Island of Hawaii also have their night skies protected.
Image Credit & Copyright: José Luis Quiñones (Entre Encinas y Estrellas)

Sunday, March 12, 2017

At the Heart Of Orion

Near the center of this sharp cosmic portrait, at the heart of the Orion Nebula, are four hot, massive stars known as the Trapezium. Tightly gathered within a regionabout 1.5 light-years in radius, they dominate the core of the dense Orion Nebula Star Cluster. Ultraviolet ionizing radiation from the Trapezium stars, mostly from the brightest star Theta-1 Orionis C powers the complex star forming region's entire visible glow. About three million years old, the Orion Nebula Cluster was even more compact in its younger years and a dynamical study indicates thatrunaway stellar collisions at an earlier age may have formed a black hole with more than 100 times the mass of the Sun. The presence of a black hole within the cluster could explain the observed high velocities of the Trapezium stars. The Orion Nebula's distance of some 1,500 light-years would make it the closest known black hole to planet Earth.
Image Credit & CopyrightChristoph KaltseisCEDIC 2017

Saturday, March 11, 2017

Reflections on vdB31

Riding high in the constellation of Auriga, beautiful, blue vdB 31 is the 31st objectin Sidney van den Bergh's 1966 catalog of reflection nebulae. It shares this well-composed celestial still life with dark, obscuring clouds recorded in Edward E. Barnard's 1919 catalog of dark markings in the sky. All are interstellar dust clouds, blocking the light from background stars in the case of Barnard's dark nebulae. For vdB 31, the dust preferentially reflects the bluish starlight from embedded, hot, variable star AB Aurigae. Exploring the environs of AB Aurigae with the Hubble Space Telescope has revealed the several million year young star is itself surrounded by flattened dusty disk with evidence for the ongoing formation of a planetary system. AB Aurigae is about 470 light-years away. At that distance this cosmic canvas would span about four light-years.
Image Credit & CopyrightAdam BlockMt. Lemmon SkyCenterU. Arizona

Hubble Hones in On a Hypergiant's a Homes

This beautiful Hubble image reveals a young super star cluster known as Westerlund 1, only 15,000 light-years away in our Milky Way neighborhood, yet home to one of the largest stars ever discovered.

Stars are classified according to their spectral type, surface temperature, and luminosity. While studying and classifying the cluster’s constituent stars, astronomers discovered that Westerlund 1 is home to an enormous star.  Originally named Westerlund 1-26, this monster star is a red supergiant (although sometimes classified as a hypergiant) with a radius over 1,500 times that of our sun. If Westerlund 1-26 were placed where our sun is in our solar system, it would extend out beyond the orbit of Jupiter.

Most of Westerlund 1’s stars are thought to have formed in the same burst of activity, meaning that they have similar ages and compositions. The cluster is relatively young in astronomical terms —at around three million years old it is a baby compared to our own sun, which is some 4.6 billion years old.

Image credit: ESA/Hubble & NASA
Text credit: European Space Agency

Hubble Space Telescope

Wednesday, March 8, 2017

Dust, Gas, and Stars in the Orion Nebula



Explanation: The Great Nebula in Orion, an immense, nearby starbirth region, is probably the most famous of all astronomical nebulas. Here, filaments of dark dust and glowing gas surround hot young stars at the edge of an immense interstellar molecular cloud only 1500 light-years away. In the featured deep image shown in assigned colors, part of the nebula's center is shown as taken by the Hubble Space Telescope. The Great Nebula in Orion can be found with the unaided eye near the easily identifiable belt of three stars in the popular constellation Orion. In addition to housing a bright open cluster of stars known as the Trapezium, the Orion Nebula contains many stellar nurseries. These nurseries contain much hydrogen gas, hot young stars, proplyds, and stellar jets spewing material at high speeds. Also known as M42 and M43, the Orion Nebula spans about 40 light years and is located in the same spiral arm of our Galaxy as the Sun.

 Image Credit: NASAESAHubbleHLAReprocessing & Copyright: Jesús M.Vargas & Maritxu Poyal


Monday, March 6, 2017

The Mysterious Rings of Supernova

What's causing those odd rings in supernova 1987A? Thirty years ago, in 1987, the brightest supernova in recent history was seen in the Large Magellanic Cloud. At the center of the featured picture is an object central to the remains of the violent stellar explosion. Surrounding the center are curious outer rings appearing as aflattened figure 8. Although large telescopes including the Hubble Space Telescope monitor the curious rings every few years, their origin remains a mystery. Pictured here is a Hubble image of the SN1987A remnant taken in 2011.Speculation into the cause of the rings includes beamed jets emanating from an otherwise hidden neutron star left over from the supernova, and the interaction of the wind from the progenitor star with gas released before the explosion.
Image Credit: ESA/HubbleNASA

Saturday, March 4, 2017

Still life with reflection dust

In this beautiful celestial still life composed with a cosmic brush, dusty nebulaNGC 2170 shines at the upper left. Reflecting the light of nearby hot stars, NGC 2170 is joined by other bluish reflection nebulae, a compact red emission region, and streamers of obscuring dust against a backdrop of stars. Like the common household items still life painters often choose for their subjects, the clouds of gas, dust, and hot stars pictured here are also commonly found in this setting - a massive, star-forming molecular cloud in the constellation of the Unicorn (Monoceros). The giant molecular cloud, Mon R2, is impressively close, estimatedto be only 2,400 light-years or so away. At that distance, this canvas would be about 15 light-years across.
Image Credit & CopyrightAdam BlockMt. Lemmon SkyCenterU. Arizona

Friday, March 3, 2017

Hubble Showcases a Remarkable Galactic Hybrid

This NASA/ESA Hubble Space Telescope image showcases the remarkable galaxy UGC 12591. UGC 12591 sits somewhere between a lenticular and a spiral. It lies just under 400 million light-years away from us in the westernmost region of the Pisces–Perseus Supercluster, a long chain of galaxy clusters that stretches out for hundreds of light-years — one of the largest known structures in the cosmos.

The galaxy itself is also extraordinary: it is incredibly massive. The galaxy and its halo together contain several hundred billion times the mass of the sun; four times the mass of the Milky Way. It also whirls round extremely quickly, rotating at speeds of up to 1.8 million kilometers (1.1 million miles) per hour.

Observations with Hubble are helping astronomers to understand the mass of UGC 1259, and to determine whether the galaxy simply formed and grew slowly over time, or whether it might have grown unusually massive by colliding and merging with another large galaxy at some point in its past.

Image credit: ESA/Hubble & NASA

Text credit: European Space Agency

Hubble Space Telescope

At the Centre of Saturn

The north pole of Saturn sits at the center of its own domain. Around it swirl the clouds, driven by the fast winds of Saturn. Beyond that orbits Saturn's retinue of moons and the countless small particles that form the ring.

Although the poles of Saturn are at the center of all of this motion, not everything travels around them in circles. Some of the jet-stream patterns, such as the hexagon-shaped pattern seen here, have wavy, uneven shapes. The moons as well have orbits that are elliptical, some quite far from circular.

This view looks toward the sunlit side of the rings from about 26 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on Dec. 2, 2016 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 890 nanometers.

The view was acquired at a distance of approximately 619,000 miles (996,000 kilometers) from Saturn. Image scale is 37 miles (60 kilometers) per pixel.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

Credit: NASA/JPL-Caltech/Space Science Institute

Cassini

Thursday, March 2, 2017

Juno Captures Jupiters Cloudscape in High Resolution

This close-up view of Jupiter captures the turbulent region just west of the Great Red Spot in the South Equatorial Belt, with resolution better than any previous pictures from Earth or other spacecraft.

NASA's Juno spacecraft captured this image with its JunoCam citizen science instrument when the spacecraft was a mere 5,400 miles (8,700 kilometers) above Jupiter's cloudtops on Dec. 11, 2016 at 9:14 a.m. PT (12:14 p.m. ET). Citizen scientist Sergey Dushkin produced the sublime color processing and cropped the image to draw viewers' eyes to the dynamic clouds.

JunoCam's raw images are available at www.missionjuno.swri.edu/junocam for the public to peruse and process into image products.

Credits: NASA/JPL-Caltech/SwRI/MSSS/Sergey Dushkin

Juno

This is a Recent Solar Eclipse


 Image Credit & Copyright: Stephen Bedingfield

What kind of eclipse is this? On Sunday, visible in parts of Earth's southern hemisphere, the Moon blocked part of the Sun during a partial solar eclipse. In some locations, though, the effect was a rare type of partial eclipse called an annular eclipse. There, since the Moon is too far from the Earth to block the entire Sun, sunlight streamed around the edges of the Moon creating a "ring of fire". At some times, though, the effect was a rare type of annular eclipse. Then, an edge of the Moon nearly aligned with an edge of the Sun, allowing sunlight to stream through only low areas on the Moon. Called a "Baily's bead" or a "diamond ring", this doubly rare effect was captured Sunday in the feature photograph from Chubut, Argentina, in South America. This summer a total solar eclipse will swoop acrossNorth America.

Annular Eclipse After Sunrise


Image Credit & Copyright
Vincent Bouchama

From northern Patagonia, morning skies were clear and blue on Sunday, February 26. This sweeping composite scene, overlooking Hermoso Valle, Facundo, Chubut, Argentina, follows the Sun after sunrise, capturing an annular solar eclipse. Created from a series of exposures at three minute intervals, it shows the year's first solar eclipse beginning well above the distant eastern horizon. An exposure close to mid-eclipse recorded the expected ring of fire, the silhouette of the New Moon only slightly too small to cover the bright Sun. At that location on planet Earth, the annular phase of the eclipse lasted a brief 45 seconds.

Tuesday, February 28, 2017

Sand Moving Under Curiosity, One day to Next

This pair of images shows effects of one Martian day of wind blowing sand underneath NASA's Curiosity Mars rover on a non-driving day for the rover. Each image was taken just after sundown by the rover's downward-looking Mars Descent Imager (MARDI). The area of ground shown in the images spans about 3 feet (about 1 meter) left-to-right.
The first image was taken on Jan. 23, 2017, during the 1,587th Martian day, or sol, of Curiosity's work on Mars. Figure A is this image with a scale bar in centimeters. The second was taken on Jan. 24, 2017 (Sol 1588).andnbsp; The day-apart images by MARDI were taken as a part of investigation of wind's effects during Martian summer, the windiest time of year in Gale Crater.
When Curiosity landed inside Gale Crater in August 2012, MARDI recorded the descent from the rover's point of view. Malin Space Science Systems, San Diego, built and operates MARDI. NASA's Jet Propulsion Laboratory, a division of the Caltech in Pasadena, California, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington, and built the project's Curiosity rover.
Image Credit: NASA/JPL-Caltech/MSSS

A White Oval Cloud on Jupiter from Juno

This storm cloud on Jupiter is almost as large as the Earth. Known as a white oval, the swirling cloud is a high pressure system equivalent to an Earthly anticyclone. The cloud is one of a "string of pearls" ovals south of Jupiter's famous Great Red Spot. Possibly, the Great Red Spot is just a really large white oval than turned red. Surrounding clouds show interesting turbulence as they flowaround and past the oval. The featured image was captured on February 2 as NASA's robotic spacecraft Juno made a new pass just above the cloud tops of theJovian world. Over the next few years, Juno will continue to orbit and probe Jupiter, determine atmospheric water abundance, and attempt to determine ifJupiter has a solid surface beneath its thick clouds.
Image Credit: NASAJPL-CaltechSwRIMSSSProcessing: Roman Tkachenko

Juno

Monday, February 27, 2017

Images of the Sun From the GOES 16 Satellite

These images of the sun were captured at the same time on January 29, 2017 by the six channels on the Solar Ultraviolet Imager or SUVI instrument aboard NOAA’s GOES-16 satellite. They show a large coronal hole in the sun’s southern hemisphere. Data from SUVI will provide an estimation of coronal plasma temperatures and emission measurements which are important to space weather forecasting.

SUVI is essential to understanding active areas on the sun, solar flares and eruptions that may lead to coronal mass ejections which may impact Earth. Depending on the magnitude of a particular eruption, a geomagnetic storm can result that is powerful enough to disturb Earth’s magnetic field. Such an event may impact power grids by tripping circuit breakers, disrupt communication and satellite data collection by causing short-wave radio interference and damage orbiting satellites and their electronics. SUVI will allow the NOAA Space Weather Prediction Center to provide early space weather warnings to electric power companies, telecommunication providers and satellite operators.

NASA successfully launched GOES-R at 6:42 p.m. EST on November 19, 2016 from Cape Canaveral Air Force Station in Florida. It was renamed GOES-16 when it achieved orbit. GOES-16 is now observing the planet from an equatorial view approximately 22,300 miles above the surface of the Earth.

Image Credit: NOAA

GOES-R

Four Quasar Images Surround a Galaxy Lens

An odd thing about the group of lights near the center is that four of them are the same distant quasar. This is because the foreground galaxy -- in the center of the quasar images and the featured image -- is acting like a choppy gravitational lens. A perhaps even odder thing is that by watching these background quasars flicker, you can estimate the expansion rate of the universe. That is because the flicker timing increases as the expansion rate increases. But to some astronomers, theoddest thing of all is that these multiply imaged quasars indicate a universe that is expanding a bit faster than has been estimated by different methods that apply to the early universe. And that is because ... well, no one is sure why. Reasons might include an unexpected distribution of dark matter, some unexpected effect of gravity, or something completely different. Perhaps future observations and analyses of this and similarly lensed quasar images will remove these oddities.
Image Credit: ESA/HubbleNASASherry Suyu et al.

Sunday, February 26, 2017

A Supercell Thunderstorm Cloud Over Montana

Is that a spaceship or a cloud? Although it may seem like an alien mothership, it's actually a impressive thunderstorm cloud called a supercell. Such colossal stormsystems center on mesocyclones -- rotating updrafts that can span several kilometers and deliver torrential rain and high winds including tornadoes. Jagged sculptured clouds adorn the supercell's edge, while wind swept dust and raindominate the center. A tree waits patiently in the foreground. The above supercell cloud was photographed in 2010 July west of GlasgowMontanaUSA, caused minor damage, and lasted several hours before moving on.
Image Credit & Copyright: Sean R. Heavey

Saturday, February 25, 2017

All Planet in Panorama

For 360 degrees, a view along the plane of the ecliptic is captured in this remarkable panorama, with seven planets in a starry sky. The mosaic was constructed using images taken during January 24-26, from Nacpan Beach, El Nido in Palawan, Philippines. It covers the eastern horizon (left) in dark early morning hours and the western horizon in evening skies. While the ecliptic runs along the middle traced by a faint band of zodiacal light, the Milky Way also cuts at angles through the frame. Clouds and the Moon join fleeting planet Mercury in the east. Yellowish Saturn, bright star Antares, and Jupiter lie near the ecliptic farther right. Hugging the ecliptic near center are Leo's alpha star Regulus and star cluster M44. The evening planets gathered along the ecliptic above the western horizon, are faint Uranus, ruddy Mars, brilliant Venus, and even fainter Neptune. A well labeled version of the panorama can be viewed by sliding your cursor over the picture, or just following this link.
Image Credit & CopyrightTunç Tezel (TWAN)

Friday, February 24, 2017

NGC:3621 Far Beyond Our Local Group

Far beyond the local group of galaxies lies NGC 3621, some 22 million light-years away. Found in the multi-headed southern constellation Hydra, the winding spiral arms of this gorgeous island universe are loaded with luminous blue star clusters, pinkish starforming regions, and dark dust lanes. Still, for astronomers NGC 3621has not been just another pretty face-on spiral galaxy. Some of its brighter stars have been used as standard candles to establish important estimates of extragalactic distances and the scale of the Universe. This beautiful image of NGC 3621, is a composite of space- and ground-based telescope data. It traces the loose spiral arms far from the galaxy's brighter central regions for some 100,000 light-years. Spiky foreground stars in our own Milky Way Galaxy and even more distant background galaxies are scattered across the colorful skyscape.
Image Credit & Copyright: Processing - Robert GendlerRoberto Colombari
Data - Hubble Legacy ArchiveEuropean Southern Observatory, et al.

Thursday, February 23, 2017

The Calabash Nebula from Hubble

Fast expanding gas clouds mark the end for a central star in the Calabash Nebula. The once-normal star has run out of nuclear fuel, causing the central regions to contract into a white dwarf. Some of the liberated energy causes the outer envelope of the star to expand. In this case, the result is a photogenic proto-planetary nebula. As the million-kilometer per hour gas rams into the surroundinginterstellar gas, a supersonic shock front forms where ionized hydrogen and nitrogen glow blue. Thick gas and dust hide the dying central star. The Calabash Nebula, also known as the Rotten Egg Nebula and OH231.8+4.2, will likely develop into a full bipolar planetary nebula over the next 1000 years. The nebula, featured here, is about 1.4 light-years in extent and located about 5000 light-years away toward the constellation of Puppis.
Image Credit: NASAESAHubbleMASTAcknowledgement: Judy Schmidt

Hubble Space Telescope

Daphnis and the Rings of Saturn

What's happening to the rings of Saturn? Nothing much, just a little moon making waves. The moon is 8-kilometer Daphnis and it is making waves in the Keeler Gapof Saturn's rings using just its gravity -- as it bobs up and down, in and out. The featured image is a wide-field version of a previously released image taken last month by the robotic Cassini spacecraft during one of its new Grand Finale orbits. Daphnis can be seen on the far right, sporting ridges likely accumulated from ring particlesDaphnis was discovered in Cassini images in 2005 and raised mounds of ring particles so high in 2009 -- during Saturn's equinox when the ring plane pointed directly at the Sun -- that they cast notable shadows.
Image Credit: NASAJPL-CaltechSpace Science InstituteCassini

Cassini

Seven World for TRAPPIST 1

Seven worlds orbit the ultracool dwarf star TRAPPIST-1, a mere 40 light-years away. In May 2016 astronomers using the Transiting Planets and Planetesimals Small Telescope (TRAPPIST) announced the discovery of three planets in the TRAPPIST-1 system. Just announced, additional confirmations and discoveries by the Spitzer Space Telescope and supporting ESO ground-based telescopes have increased the number of known planets to seven. The TRAPPIST-1 planets are likely all rocky and similar in size to Earth, the largest treasure trove of terrestrial planets ever detected around a single star. Because they orbit very close to their faint, tiny star they could also have regions where surface temperatures allow for the presence of liquid water, a key ingredient for life. Their tantalizing proximity to Earth makes them prime candidates for future telescopic explorations of the atmospheres of potentially habitable planets. All seven worlds appear in this artist's illustration, an imagined view from a fictionally powerful telescope near planet Earth. Planet sizes and relative positions are drawn to scale for the Spitzer observations. The system's inner planets are transiting their dim, red, nearly Jupiter-sized parent star.
For image credit and copyright guidance, please visit the image website http://antwrp.gsfc.nasa.gov/apod/ap170223.html